

A **meteor** is a meteoroid that has been pulled into a planet's atmosphere and begins to burn up because of the friction it's speed generates. As the burning meteor streams across the sky it creates a bright light, which we often call a shooting star!

VENUS

Meteorites are fragments of large asteroids from the asteroid belt located between Mars and Jupiter. When the large bodies collide, pieces are knocked loose and can sometimes orbit the sun for millions of years before falling to the Earth's surface.

Meteoroids are formed when asteroids floating around in space bump into each other and break off into smaller pieces.

JUPITER

AsteroidBelt

meteor that does

not burn up in the

Earth's atmosphere,

but rather hits the

ground.

Asteroids orbit the sun, but are much smaller than planets. Most of these rocky objects in our solar system hang out in the Asteroid Belt, which lies between Mars and Jupiter.

SATURN

URANUS

Similar to the way our Earth is structured, larger asteroids can also have layers. When these layers get fragmented, the different layers produce different types of meteorites, like the ones you see below.

Crust: The crust is the outside layer of a planetary body. You could think of this like the shell of an egg, the crust is what you can see.

Mantle: The mantle is the middle layer. This is what sits under the crust, and outside of the core. The mantle contains a majority of the body's mass.

Core: The core is the very center of a planetary body. Because of the mantle and crust sitting on top of it, the core is compressed and becomes very dense.

Types of meteorites

Stony-Iron Meteorite: Part iron,

part stone, these rare meteorites

called olivine, which is a form of

magnesium-iron. In some cases

the olivine crystals cluster up,

like patterns. These meteorites

come from the **mantles** of large

asteroids, and scientists believe

the core mixes with the rocky

matter of the **mantle**.

they are formed when metal from

the metal around it in vein-

are equal parts metal and minerals.

Pallasites contain beautiful crystals

other times it spreads out through

Bruderheim Fell: Alberta, Canada, March 4, 1960 Mass: 180 kg Classification: L6, chondrite Specimen Wt: 310.0 g Provenance: Abrams Planetarium

Seymchan Found: Magadan, USSR, 1967 Mass: 323.3 kg Class: Pallasite, PMG Specimen Wt: 27.80 g Provenance: C. Whitford

Northwest Africa 5697 Found: Agadir, Morocco, 2008 Mass: 547 g Class: L3, chondrite Specimen Wt: 7.7 g, Pt. slice Provenance: C. Giessler, C. Whitford

Muonionalusta Found: Norrbotten, Sweden, 1906 Mass: 230 kg Specimen Wt: 111.4 g Provenance: A. Jerochov, C. Whitford **Iron Meteorite:** As the name tells us, these meteorites are made **cores** of large asteroids that were heated up so hot that all the metal

Chondrules/Chondrites: These

meteorites are made up of small

blob-like grains of stone called

billions of years from dust and

mineral debris. Over time they

begin to clump together into a

the time of their formation to

the time they fall to Earth these

meteorites do not change. That

means that they can tell us a lot

system were formed!

about how the planets in our solar

chondrules. Chondrules form over

larger mass, as you see here. From

metal-detecting technology.